
Eliminating Inter-Domain Vulnerabilities in Cyber-Physical
Systems: An Analysis Contracts Approach

Ivan Ruchkin
Inst. for Software Research
Carnegie Mellon University

Pittsburgh, PA, USA
iruchkin@cs.cmu.edu

Ashwini Rao
Inst. for Software Research
Carnegie Mellon University

Pittsburgh, PA, USA
agrao@cs.cmu.edu

Dionisio De Niz
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

dionisio@sei.cmu.edu

Sagar Chaki
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

chaki@sei.cmu.edu

David Garlan
Inst. for Software Research
Carnegie Mellon University

Pittsburgh, PA, USA
garlan@cs.cmu.edu

ABSTRACT
Designing secure cyber-physical systems (CPS) is a partic-
ularly difficult task since security vulnerabilities stem not
only from traditional cybersecurity concerns, but also phys-
ical ones. Many of the standard methods for CPS design
make strong and unverified assumptions about the trust-
worthiness of physical devices, such as sensors. When these
assumptions are violated, subtle inter-domain vulnerabili-
ties are introduced into the system model. In this paper we
use formal specification of analysis contracts to expose secu-
rity assumptions and guarantees of analyses from reliability,
control, and sensor security domains. We show that this
specification allows us to determine where these assump-
tions are violated, opening the door to malicious attacks.
We demonstrate how this approach can help discover and
prevent vulnerabilities using a self-driving car example.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—methodologies;
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—real-time and embedded sys-
tems

Keywords
Cyber-physical systems; analysis contracts; sensor; control

1. INTRODUCTION
High-quality cyber-physical systems (CPS) require the con-

sideration of a broad range of system qualities. A substan-
tial body of literature has proposed methods and tools to
address traditional engineering qualities like performance of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CPS-SPC’15 October 16 2015, Denver, CO, USA
Copyright 2015 ACM 978-1-4503-3827-1/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2808705.2808714.

heterogeneous control [15] [52], correctness[11] [57], schedu-
lability [35] [13], fault tolerance [59] [1], and safety [24] [51]
[19]. This focus is partially due to the fact that control
theory, theoretical computer science, and mechanical engi-
neering have been seen as the “core” foundations for CPS
research [2][40][53].

Security, however, has received relatively little attention
as a systemic quality of CPS. As Lee put it in [38], “the term
CPS is sometimes confused with ’cybersecurity,’ which con-
cerns the confidentiality, integrity and availability of data
and has no intrinsic connection with physical processes.”1

Indeed, physical processes in CPS complicate reasoning be-
cause of the cross-cutting nature of security: sensors and ac-
tuators that interact with the physical world may contribute
to a composite cyber-physical vulnerability. For example,
security assurance for a car cannot be confined to its cyber
part: the software relies on physical elements, which may be
vulnerable to attacks in the physical realm, such as disabling
its sensors [7]. As recent results show, a sensor failure can
lead to a larger attack surface since the sensor set produces
a larger proportion of compromised data [20]. These failures
can lead to vulnerabilities in life-critical systems, which may
be exploited with serious consequences [36].

A major barrier to achieving up-front systematic security
engineering in CPS is incompatibility between traditional
CPS engineering analyses and sensor security [53] [40]. One
example of such analyses in reliability engineering is Failure
Modes and Effects Analysis (FMEA) [58], which determines
probable failure configurations (“modes”) that can arise from
component malfunction. For sensors, FMEA makes an im-
plicit assumption that data received from a non-failed sensor
is trustworthy, but does not model or verify this assumption
[41]. Conversely, control safety analysis [20] typically consid-
ers data trustworthiness in the normal operation mode, but
often ignores trustworthiness in the failure modes that are
provided by FMEA. Thus, both of these forms of analysis
make assumptions that may be inconsistent with, or ignore
modes determined by, the other. Incompatibilities such as
these invalidate the preconditions, and hence conclusions, of
the logic behind analyses, resulting in a system design that
is not secure across all modes.

1Emphasis is ours.

CPS developed with incompatible analyses, such as those
just mentioned, are vulnerable to attacks through what we
call inter-domain vulnerabilities – vulnerabilities that arise
on the boundary of engineering domains and analyses. State
estimation methods for control implicitly assume that sensor
configuration does not change over time, and that at least
half of the sensors are trustworthy [20]. In practice, however,
the available sensors may change during operation, e.g., a
sensor can malfunction or fail entirely, become unavailable
(e.g., GPS in a tunnel or lidar during rain and fog [33]), or be
subverted by an attacker. In contrast, analyses like FMEA
may consider scenarios in which the set of available sensors
changes, breaking the sensor invariance assumption of other
analyses. As a consequence, advanced control systems, such
as adaptive cruise control, smart braking, and smart steering
may have vulnerabilities that can be exploited.

In this paper we propose a design-time approach to elim-
inate inter-domain vulnerabilities by systematically embed-
ding security analyses and assumptions into the CPS engi-
neering process. This approach builds on the analysis con-
tracts framework that has been validated on the domains
of thread scheduling and electrothermal battery design [56].
An analysis contract is a formal specification of an analy-
sis interface consisting of inputs, outputs, assumptions, and
guarantees. Verification using contracts can detect situa-
tions in which an analysis produces an unsound result or
violates an assumption of another analysis, thus introducing
a bug or a vulnerability. Here we extend this prior work by
demonstrating how the use of analysis contracts for sensor
trustworthiness analysis, FMEA, and control safety analysis
can lead to a more secure CPS design.

More specifically, this paper makes four contributions:

• A description of interactions and dependencies among
three analysis domains: reliability, sensor security, and
control. These interactions could lead to a system fail-
ure via successful exploitation of a vulnerability.

• A formal specification of these dependencies and inter-
actions in the form of deterministic and probabilistic
analysis contracts.

• An algorithm for verification of deterministic assump-
tions for sensor trustworthiness, FMEA, and control
safety and the specified contracts.

• Demonstration of the feasibility and utility of the anal-
ysis contracts approach on a self-driving car system
model.

The rest of the paper is organized as follows. The next
section gives the necessary background on the domains and
tools we use in this paper, as well as a brief overview of re-
lated work. Section 3 explains the vulnerability and multi-
domain attack in detail. Then, in Section 4 we present our
approach of specifying and verifying analysis contracts. Fi-
nally Sections 5 and 6 discuss respectively the limitations
and implications of the analysis contracts approach, thus
concluding the paper.

2. BACKGROUND AND RELATED WORK
This section describes the domains of security, reliabil-

ity, and control, whose cross-domain interaction can lead to
security vulnerabilities. It also presents prior work on mod-
eling and verification via analysis contracts that we build

upon, as well as related approaches that address similar
inter-domain issues.

2.1 Sensor Security
Sensors enable the exchange between cyber and physical

worlds: they interact with the physical world and provide in-
puts to the controller. By compromising sensors, an attacker
can send erroneous inputs to the controller, which depends
on sensors to estimate the state of the system. Malicious
inputs from sensors can result in deception attacks, which
compromise the integrity of the cyber-physical system [5].

Cyber-physical systems can have different types of sensors
for measuring variables through physical channels [60]. For
example, a car can have sensors for measuring distance (li-
dar or sonar [32]), velocity (a magnetic speedometer), and
tire pressure. In order to handle faults and malfunctions in
sensors, CPS can use different technologies to measure the
same variable. For example, cars can use Sonar in addi-
tion to Lidar to measure distance, since Lidar can fail under
foggy conditions [33].

By targeting different types of sensors, an attacker can
cause specific types of failures. For instance, by sensing
incorrect distance readings, an attacker could compromise
braking functionality [36]. The placement of sensors (inside
versus outside the car), communication mechanisms (physi-
cal network access versus remote access via WiFi), and other
aspects, affect the ease with which an attacker can compro-
mise the sensors [7].

In addition to malicious inputs, sensor inputs can be un-
reliable due to noise, packet loss, and faults [50]. CPS con-
trol algorithms either make assumptions about reliability or
trustworthiness of sensor inputs, or incorporate mechanisms
like filters and decoders to prevent, detect and tolerate unre-
liable sensor inputs [5]. For instance, consensus algorithms
used require at least some number of sensor inputs to be reli-
able [5], and compressed sensing algorithms require approx-
imately half of sensors to be trustworthy [20]. To evaluate
trustworthiness of sensor input data one may use methods
from literature on wireless sensor networks [41] [62].

2.2 Reliability and Fault Tolerance
Embedded and safety-critical systems have a long tradi-

tion of designs that survive random mechanical and hard-
ware faults due to manufacturing imperfections and random
events, such as cosmic rays [59]. This field is largely mo-
tivated by the imperfect reality of the material world, thus
situated towards the physical side of CPS. A major design-
time technique to achieve higher fault-tolerance is redun-
dancy – adding functionally identical components in order
to preserve system’s operation in case one of the components
fails.

One of the well-established analytic operations in reli-
ability engineering is Failure Modes and Effects Analysis
(FMEA) [58]. The goal of this analysis is to evaluate the
system’s reliability in terms of the impact (”effects”) that
failing components have on other components and the whole
system. Such evaluation often presupposes random indepen-
dent failures, such as mechanical malfunctions or hardware
defects, in order to stochastically investigate the most likely
failure states of the system (also known as modes). Some-
times FMEA is applied manually as a design process [6],
but over the last two decades multiple tools have emerged
to fully automate FMEA [28] [66].

For this work we consider a generalized version of FMEA
that not only calculates failure modes and their probabil-
ities, but also adds cost-constrained redundancy in sensors
and controllers to reduce failure probability to an acceptable
domain-specific value. This analysis can be seen as an ab-
straction of a semi-automated design process that arrives at
a sufficiently redundant and acceptably cheap architecture.

2.3 CPS Control
Control engineering focuses on designing an algorithm to

impose actuation on a system, state of which is being mon-
itored, in order to bring the system to a desired state [49].
Control design is often model-based where the plant (the sys-
tem and environment under control) and the controller (the
algorithm) are represented as state transfer functions. For
complex systems control engineering typically includes ex-
tensive simulation of the system with mixed qualitative and
quantitative judgment, using tools like MATLAB/Simulink
[9]. Smaller systems can be analyzed with more theoretical
and stronger-guarantee approaches such as Lyapunov func-
tions [26].

Regardless of what kind of analysis is done on a control
system, this analysis needs to consider many design param-
eters such as the system equations, type of controller (reac-
tive, predictive, adaptive), control gains, and control perfor-
mance requirements (rise time, time-to-peak, settling time,
and percent overshoot) [8]. For this paper we adopt a black-
box view on these parameters, and represent them as a single
control safety analysis with inputs and outputs. The goal
of such analysis is to ensure that the controller meets the
requirements given the system model.

Applying the classic control methods to cyber-physical
systems faces a number of obstacles. The obstacles include
the uncertainty of the environment [53], timing of compu-
tations (which is often abstracted out of control models)
[39], and security that can be compromised through sensors
and actuators [5]. Overcoming these obstacles often leads
to challenging integration with other modeling approaches,
such as state machines and hybrid systems [4]. This pa-
per takes steps towards this integration with reliability and
security domains.

Recent work on secure CPS control addresses sensor and
actuator security for various domains (e.g., smart grids [45])
and types of attacks (e.g., replay attacks [44]). One of im-
portant results is a set of robust state estimation algorithms
that have theoretical guarantees in face of sensor attacks
such as spoofing and replay [20] [50]. We build upon this
body of research in our paper, and specify sensor trustwor-
thiness assumptions on top of which this work is built.

2.4 Architectural Modeling in AADL
The Architecture Analysis and Design Language (AADL)

[21] is a Society of Automotive Engineers standard aimed at
describing the software and hardware architecture of real-
time embedded systems. AADL provides constructs focused
on describing the runtime software architecture in terms of
processes, threads, and data, and the executing platform in
terms of processors, networks, memory storage units, and
so on, and their relationship based on binding properties.
AADL is designed to host the multiple analysis algorithms
used to verify different critical properties of embedded real-
time systems and CPS in general. These properties include
timing requirements (e.g., inflation of an airbag within 0.1

seconds), logical correctness (e.g., absence of deadlocks),
thermal safety (e.g., no overheating), fault tolerance (e.g.,
tolerate failure of one processor), and many others.

To support the ever-increasing number of analysis algo-
rithms used in CPS, AADL allows the definition of sub-
languages in the form of an annex and the corresponding
compiler submodule. An annex allows the designer to add
detailed descriptions to part of the model to be used in a
particular analysis. For instance, the Behavioral Annex [22]
allows a component’s detailed discrete-state behavior to be
analyzed by model checkers. Annexes are a powerful ex-
tension mechanism that allows AADL to become the lingua
franca of model-based engineering research with an increas-
ing acceptance in the industry.

Another important feature of AADL is a mode – a sys-
tem configuration with components, connections, and values
of properties. For example, a car may be in cruise con-
trol or manual mode, which determines whether or not the
cruise controller actuates the accelerator. AADL modes al-
low specification of discrete switching behavior that is for-
mally equivalent to timed abstract state machines [65]. Modes
have been a feature of architectural languages since the MetaH
language [64], and AADL unites other advanced features
with modes to enable expressive and flexible system mod-
eling. In this paper we will use modes to represent failure
configurations of a system, e.g., if a sensor is malfunctioning.

2.5 Analysis Contracts Approach
The capacity of AADL to host an unlimited number of

analysis algorithms with custom annexes has positioned it as
a powerful tool to tackle the heterogeneity of CPS engineer-
ing. Unfortunately, these algorithms are traditionally de-
veloped within a specific scientific domain, making implicit
assumptions and creating specialized abstractions that ig-
nore potential interactions with other analyses. As a result,
analyses may contradict each other’s assumptions about the
system, thus invalidating their own outputs. To deal with
this problem we developed the analysis contracts verification
framework [46] [56] that enables the description of the con-
tracts between analysis and the system model in the form of
inputs, outputs, assumptions, and guarantees. These specifi-
cations are described in the contracts annex with formalized
syntax and semantics. The active toolset was developed to
support automated analytic integration [55].

To define an analysis contract we first need to describe the
formal structure behind a set of domains, such as reliability
and control. Each domain needs to capture the semantics
in which the effects of the interacting analyses can be au-
tomatically verified. Our prior work incorporated a number
of special verification tools: Spin for Promela language [30]
and Z3 for Satisfiability Modulo Theories (SMT) v2 language
[12]. In this work the contract language was composed of a
first-order and linear temporal logic fragments. We utilize
the former in this paper and explore the possible second-
order and probabilistic extensions.

2.6 Related Work
There is a growing body of literature on integrating het-

erogeneous models and domains at runtime. For example,
in [18] the authors present a model-based methodology for
designing a car’s control system. Such methodologies, imple-
mented in frameworks like OpenMETA [61] and METROII
[10], integrate a set of models through formal relations of

abstraction, transformation, and composition, typically pro-
viding strong theoretical guarantees. However, these guar-
antees often do not extend beyond the traditional concerns
such as correctness and safety. In particular to embed such
a cross-cutting concern as security into these methodolo-
gies, one would likely have to change almost all modeling
formalisms, which is not feasible or scalable.

Assume-guarantee reasoning originates in Hoare’s logic
[29] and is widely used today in component-based modeling
for CPS [57]. Multiple methodologies and frameworks asso-
ciate contracts with components and strive to demonstrate
system-wide guarantees given local component contracts [3]
[47] [48]. Unfortunately, most security concerns cannot be
confined to a single component or subsystem, and propa-
gate across most components’ contracts [5]. Such global se-
curity specification takes away the compositional power of
contracts, and often leads to the state explosion in verifi-
cation [42]. In contrast, analysis contracts change the per-
spective to the algorithms that change and verify the model,
creating opportunities to specify security concerns that can-
not be associated with any particular component.

3. INTER-DOMAIN VULNERABILITIES
In this section we describe a realistic example of an inter-

domain vulnerability that can occur in cyber-physical sys-
tems. We consider the example of a self-driving car equipped
with sensors for braking functionality. We explain the in-
terdependencies between analyses at design time that can
result in vulnerabilities, and adversary models and attacks
that can exploit such vulnerabilities at runtime.

Figure 1: An autonomous car driving behind a lead-
ing car uses its distance and velocity sensors to make
a braking decision.

3.1 Scenario Description
Consider a braking scenario for self-driving cars. Figure 1

shows two cars traveling in the same direction. The follower
car is equipped with adaptive cruise control. The leading
car is about to stop, and the follower needs to make a de-
cision: at what point and how hard to actuate the brakes.
The decision to brake is based on a number of sensors that
estimate velocity and position relative to the leading car.
This decision is critical: most mistakes can endanger lives.

The autonomous car systems in Figure 1 use velocity and
distance sensors for braking. Two distance sensors each use
a different technology to measure distance: a lidar for laser
ranging and a car-to-car (C2C) communication network 2 to
exchange position information. Further, the lidar is internal
to the car, and the network be accessed from the outside.
There are two velocity sensors, and each uses a different
technology to measure velocity: a GPS and a traditional
magnetic speedometer. The speedometer is inside the car,
and the GPS is outside. Table 1 shows the sensed variable,

2www.car-2-car.org

Sensor variable Technology Placement
Distance Lidar Internal
Distance C2C External
Velocity Speedometer Internal
Velocity GPS External

Table 1: Sensor type, technology and placement

technology, and placement for the distance and velocity sen-
sors in self-driving cars.

The sensors send data to the braking controller through
the CAN (Controller Area Network) bus. Based on this
data, the controller decides the moment and power of brak-
ing at each periodic execution. Since the controller has no
perception of the physical world except through the sensors,
it is important to know which sensors are more trustworthy
than others. This is indeed another important sensor param-
eter, known as trustworthiness [41], that indicates whether
a sensor can be compromised by an attacker. A sensor’s
trustworthiness must be considered within the context of an
adversary model.

3.2 Adversary Model
Our adversary model describes assumptions behind at-

tackers and parts of a self-driving car that can be attacked.
For example, an adversary could attack the sensors, actua-
tors, controllers, or communication networks. In our exam-
ple, we limit our adversarial model to attacks on the sensors,
but not other components, thus assuming that other compo-
nents are trustworthy. Note that we make this assumption to
illustrate inter-domain vulnerabilities, and analyses for gen-
eral component trustworthiness complement our approach,
but are outside the scope of this paper.

We consider several adversary profiles. First, a powerful
adversary can attack any sensor, both internal and exter-
nal. One known case of such an adversary is one that has
CAN bus access [36]. By forging CAN packets, the attacker
can trivially cause system failures. However, full internal
network access is not always a realistic assumption for a
moving vehicle.

The two other profiles are more realistic: these adver-
saries are less powerful, but intelligently manage to exploit
a vulnerability using limited resources. We make several as-
sumptions about these adversaries. They have a technical
capability to get information about the structure, properties
(such as in Table 1), and operation of system components
by exploring similar systems. For example, an adversary
knows that a Lidar sensor does not work in the presence of
fog. A realistic adversary can gain such system knowledge
by either examining a target system or obtaining such infor-
mation from third parties. We assume that the adversary
does not have the computational capabilities to break strong
cryptographic security measures, e.g., encryption. An adver-
sary can attack sensors in any order, and we do not make
any limiting assumptions about duration of attacks.

The profiles we consider are the attackers of sensors exter-
nal to the car (external adversary) or sensors internal to the
car (internal adversary). The external adversary can attack
the sensors via physical channels, such as infrared [63] or
short-range wireless [7]. In contrast, the internal adversary
has access to various devices like a radio, USB reader, or
speedometer.

www.car-2-car.org

Sensor Available in mode
nominal fail 1 (fog) fail 2 fail 3

Lidar 3 7 3 3
C2C 3 3 7 7
Speedometer 3 3 3 7
GPS 3 3 3 3

Table 2: Configurations output by the FMEA analy-
sis. 3 indicates that the sensor is functioning prop-
erly. 7 indicates that the sensor is malfunctioning
and not providing data.

3.3 Analyses
To design the braking system for a self-driving car, engi-

neers carry out several analyses at design time. We consider
three analyses: FMEA analysis, sensor trustworthiness anal-
ysis, and control safety analysis. As typical in many CPS
projects, these analyses are carried out by engineers from
different domains who generally work independently from
each other. When analyses from different domains are ap-
plied to the same system and make different assumptions, it
can be difficult for engineers to coordinate and account for
such assumptions.

3.3.1 Failure Modes and Effects Analysis
The goal of FMEA is to incorporate redundancy into the

design to handle random failures. To achieve this, FMEA
considers the probabilities of random sensor malfunction. It
further assumes that failures of different sensors are inde-
pendent. For example, in our scenario with distance and ve-
locity sensors, FMEA could output the three configurations
shown in Table 2. The nominal mode indicates the default
situation when all sensors function properly. Consider the
example of ”Fail mode 1” configuration. FMEA outputs this
configuration after considering foggy conditions. Since lidar
may not work under foggy and rainy conditions, the con-
figuration indicates that the lidar sensor may not function
properly. The remaining sensors function properly. The sys-
tem may have several probable failure modes depending on
the technologies used. FMEA may also change the sensor
set if the probability of random system failure is too high.
We consider this situation in detail in Sec 4.

FMEA analysis in AADL uses the Error Annex [14], a
standardized sublanguage, that textually defines error state
machines where failure modes and recovery transitions are
specified for each component. For example, a wireless net-
work error model can have two states – nominal and failed
– and change between them via transitions that have par-
ticular probabilities. In addition, error and recovery prop-
agation patterns describing, for instance, how a processor
failure propagates to networks, devices, and the software
components that run on them are affected. FMEA then
uses these descriptions to improve the system’s reliability.

3.3.2 Sensor Trustworthiness Analysis
The sensor trustworthiness analysis determines whether

a sensor can be compromised by an attacker. This anal-
ysis takes the following inputs: sensor placement (inter-
nal or external to the vehicle, connections to networks and
controllers), technical characteristics (technology, communi-
cation protocol, encryption, manufacturer, and component
version) and an adversary model (formulated in terms of

possible actions on components). Note that, unlike FMEA,
it does not consider the probabilities of sensor malfunction
due to random failures. Instead, it takes into account that
the probability of an adversary attacking two similar sensors
is interdependent.

It is not our focus to develop trustworthiness evaluation
methods, and existing design-time and run-time ones can
be applied [43] [41]. Design-time methods can be applied
directly to a model, and run-time methods can be used in
a simulation, and the produced data can be used to infer
trustworthiness. Our approach assumes that there exists an
appropriate trustworthiness evaluation method and does not
place significant limitations on it.

Table 3 shows the output of the trustworthiness analysis
for three adversary models. In the case of a powerful ad-
versary that can attack both external and internal sensors,
trustworthiness analysis would determine that all four sen-
sors in our scenario are not trustworthy. In the case of an
adversary that can attack only external or internal sensors,
it outputs that respectively only the external or sensors are
not trustworthy.

3.3.3 Control Safety Analysis
Control safety analysis generally decides whether control

is functionally correct, stable and meets the required per-
formance level. As discussed in Section 2.3, control analysis
needs to consider various control quality metrics. In brak-
ing controllers for autonomous vehicles it is important to
find a balance between a smooth response that is acceptable
to passengers and a sufficiently low rise time so that braking
happens in time.

Similar to FMEA and trustworthiness analysis, control
analysis makes assumptions regarding sensors. In [20] Fawzi
et al. introduce an algorithm that it interprets data from
potentially compromised sensors in order to estimate the
system state. This algorithm assumes that at least half of
the sensors are trustworthy; otherwise, it cannot estimate
the state properly. This is an important security assumption
required by the control analysis to evaluate the safety of
controllers.

3.4 Exploiting Inter-Domain Vulnerabilities
Unsatisfied assumptions behind analyses can lead to vul-

nerabilities, which can be exploited by an adversary. In our
scenario, control safety analysis makes an assumption that
at least half of the sensors are sending trustworthy data.
This assumption can be broken in two ways. The first one
may happen at design-time when the most error-prone sen-
sors are also the ones that are less trustworthy. In this
case at design time FMEA will try to replicate these sen-
sors to increase reliability, and simultaneously decrease the
proportion of trustworthy (and not error-prone) sensors be-
low 50%. As a result, the system’s controller can be misled
by its untrustworthy sensors, which provide more data than
the trustworthy ones.

The second possibility for this assumption to be broken
is at run time. Even if an external attacker isn’t powerful
enough to compromise all sensors in the nominal mode, it
is possible to exploit the system when one of sensors is not
available, e.g., due to fog. In foggy conditions, trustworthy
lidar sensors are not available, and the control algorithm
has to rely on an untrustworthy C2C network, which can
be exploited to spoof distance readings with larger values.

Sensor Placement Powerful Adversary External Adversary Internal Adversary
Lidar Internal 7 3 7
C2C External 7 7 3
Speedometer Internal 7 3 7
GPS External 7 7 3

Table 3: Sensor trustworthiness for three adversary models.

Assuming it still has time to brake, the misled controller
will miss the deadline for braking and potentially cause a
crash. The cause of this vulnerability is that the controller
assumption doesn’t hold in all likely failure modes.

Table 4 illustrates an external adversary using the unsat-
isfied assumption failure modes to cause system failures in
two out of four modes. In the nominal mode both distance
and velocity sensors have the trustworthiness proportion of
50%. In fail mode 1 distance sensing is compromised because
the only distance sensor C2C is untrustworthy. Fail mode
2 has the required proportion of trustworthy sensors. Fail
mode 3 violates the assumption because the only available
velocity GPS sensor is compromised.

To summarize, an external attacker who can attack only
external sensors and is harmless in the nominal mode, is still
capable of exploiting the vulnerability that comes from not
considering failure modes. This example shows that inter-
domain vulnerabilities may occur if analytic assumptions are
unsatisfied. In the next section we address this problem in
a more general way, logically identifying situations in which
the assumptions can be violated.

4. ANALYSIS CONTRACTS APPROACH
In this section we present a detailed formalization of the

self-driving car and its analyses to expose and eliminate
inter-domain vulnerabilities.

Figure 2: Braking architecture in a self-driving car.

4.1 System Model
We model the system (in Figure 2) using the AADL ar-

chitecture description language (see Section 2.4 for back-
ground on AADL). We build our model upon a collision
detection and avoidance model for an autonomous vehicle
created by McGee et al. [16]. The original model contains a
number of sensors, processing units (hardware devices and

control threads), actuators, and other car components, or-
ganized into several functional subsystems: collision predic-
tion/avoidance/response, networking, user interaction, and
physical devices (various sensors, brakes, airbags, radio, and
so on). We enhance this model by adding a lidar and C2C
sensors for distance and a magnetic speedometer with GPS
for velocity measurement 3. Our modeling goal is to repre-
sent aspects that are relevant to inter-domain vulnerabilities.

The first step in modeling is to formalize the elements
and properties of the automobile system that are relevant
to the FMEA, safe control, and sensor trustworthiness anal-
yses. AADL allows its users to define data types, compo-
nent types, and new properties, and we use this flexibility
to represent the aspects of the system that may lead to a
vulnerability.

AADL modes encode the different configurations under
the different failures of the system using state machines as
described in Section 3.3.1. Mode examples are given in the
rows of Table 2. Each mode m contains a full system archi-
tecture: sensors (m.S), controllers (m.R), and actuators 4.
In our prior work the analysis contracts methodology con-
sidered a single mode of the system [56], and we now extend
it to several modes.

We specify AADL elements and properties as follows:

• Sensors S have the following properties:

– Sensed variables VarsS ⊆ V: the variables for
which the sensor can provide series of values. For
example, a speedometer provides values for veloc-
ity. Some sensors may provide several variables,
e.g., GPS values can be used to compute both the
absolute position and distance to an obstacle.

– Power status Pow (boolean values: B ≡ {>,⊥}):
whether the sensor is turned on by the user or
engineer.

– Availability Avail (B): whether the sensor is pro-
viding data. This property does not presuppose
that the data is trustworthy or compromised.

– Trustworthiness Trust (B): whether the sensor
can be compromised by the attacker and is send-
ing untrustworthy data. We use this boolean ab-
straction of trust for demonstrating how a vul-
nerability is introduced. For sensors with Trust =
⊥ we assume that an attacker can compromise
them in any quantity and at any point of time.
Even with this relatively simple abstraction we
showed an exploitation of vulnerability in Table 4.
More sophisticated models may consider numeric

3Our AADL model with analysis contracts is available at
github.com/bisc/collision_detection_aadl
4Actuators are critical components of the system, but we do
not model them explicitly because our focus is on interaction
between sensors and controllers.

github.com/bisc/collision_detection_aadl

Available in mode
Variable Sensor Trustworthiness nominal fail 1 (fog) fail 2 fail 3
Distance Lidar 3 3 7 3 3
Distance C2C 7 3 3 7 7
Velocity Speedometer 3 3 3 3 7
Velocity GPS 7 3 3 3 3

Control safety assumption 3 7 3 7

Table 4: External attacker exploiting inter-domain vulnerabilities.

or multidimensional trustworthiness [23] for more
precise estimation of confidence in sensor data.

– Probability of mechanical failure Pfail (%): the
probability of a sensor mechanically malfunction-
ing and remaining broken (Avail = ⊥) within a
unit of operation time (e.g., an hour or a day).

– Sensor placement Place (internal or external): the
sensor may be located on the outer perimeter
of the car and facing outwards, or on the inside
perimeter and not exposed to the outside world.

• Controllers R have the following properties5:

– Required variables VarsR ⊆ V: the variables for
which the controller should receive values from
sensors. For example, the automated braking con-
troller should receive velocity and distance to the
closest obstacle on the course.

– Power status Pow (B): analogous to sensors, whether
the controller is turned on by the user or engineer.

– Availability Avail (B): whether the controller is
functioning and providing output to actuators.
This property does not presuppose that the con-
trol is safe or uncompromised.

– Safety of control CtrlSafe (B): whether the con-
troller meets the control performance, safety, and
stability requirements.

• System modes M (i.e., different configurations) have
the following properties:

– Required fault-tolerance αfail (%): the maximum
acceptable probability of the system’s random fail-
ure. The final design is expected to malfunction
less or equally likely than αfail.

– Attacker model AttackM (internal or external):
the type of the attacker considered in the system
design. For simplicity, we consider only one di-
mension, that is, internal or external attacker. If
required, we could model other dimensions such
as local or remote attacker. Each attacker model
contains a sensor vulnerability evaluation func-
tion IsVuln : S → B that determines whether a
particular sensor can be attacked by this attacker.
This function abstracts out technical and opera-
tional aspects of attacks in order to represent the

5Although controllers are physical elements and can be at-
tacked, in this paper we focus on sensor attacks and assume
that direct controller attacks do not happen. Since con-
trollers are typically not exposed to the physical world, their
attacks would require an access to the internal car network,
leading to a powerful attacker and trivial security analysis.

relationship between attackers and sensors. For
example, the vulnerability function for a power-
ful adversary in Table 3 is IsVuln ≡ >.

Each property P is formally a function of the component
set S that maps each component to a value in a set T of
the property’s type values, P : S → T. Same applies to
controller and mode properties. We will denote it in an
object-oriented style: Sonar.Pfail = 0.01% means that the
sonar sensor has a probability of random failure equal to
0.01%.

AADL connections and ports describe how data flows be-
tween sensors S and actuators (located in the physical sub-
system) through controllers R (located in other subsystems)
by the means of the car’s CAN bus. Although assumptions
and guarantees can be formulated in terms of connections
and ports, we do not use these elements in our contracts for
this paper. Instead we encode the data flows between S and
R in terms of sensed variables VarsS and required variables
VarsR.

The described properties do not reference each other or
depend on each other, so not every AADL instance is con-
sistent: for instance, only powered sensors can provide data:
∀s ∈ S · s.Avail =⇒ s.Pow. Checking satisfaction of such
conditions is a relatively well-explored problem and can be
solved using constraint-based solving for every mode. Lan-
guages and tools for such problems had been previously de-
veloped for UML/OCL [17], Acme [25], AADL [31], and
other architecture description languages.

We, on the contrary, investigate a more challenging prob-
lem: how to support analysis-driven change that preserves
model consistency beyond constraints. It is important to
verify each analysis operation and their order to assure that
the resulting design is sound. To this end, it is essential to
capture the interactions between analyses and the model,
which we do in the next subsection.

4.2 Specification of Contracts
FMEA Afmea. The goal of the FMEA analysis is to find a

component redundancy structure 6 that is capable of with-
standing the expected random failures of individual com-
ponents and provide a system with a probability of failure
no larger than αfail. Hence one output of FMEA is the
selection of sensors and controllers.

Another output of FMEA is a set of likely7 failure modes.
The output will contain failure modes (i.e., system configu-

6This analysis is constrained by cost (in terms of funds and
available space) of components: the trivial solution of repli-
cating each sensor a large number of times would typically
not be acceptable.
7The definition of likelihood for failure modes may differ
depending on the system requirements. For example, one
may consider failure modes with probabilities ≥ 0.1αfail.

rations with some sensors Avail = ⊥) that need to be con-
sidered for the system to be safe.

A typical FMEA assumption is that the random mechan-
ical failures are independent among all of the system’s com-
ponents. That is, a failure of one sensor does not increase
the probability of another sensor failing. This assumption
allows for simpler reasoning about failure propagation and
failure modes during the analysis. Since the probabilities of
failure are usually generalized from empirical data, we add
a correlation tolerance bound εfail > 0 to the assumption.

A guarantee of FMEA is that the controllers have all the
required variable series to actuate the system. This guar-
antee does not ensure the full correctness of the analysis
(the system may still not be fault-tolerant), but it allows to
verify that the analysis has not rendered the system non-
functional.

Thus we arrive at the contract for Afmea:

• Inputs: Pfail, αfail.

• Outputs: S, R, M.

• Assumption. Component failure independence – if one
component fails, another component is not more likely
to fail:

∀c1, c2 ∈ S ∪ R ·P (¬c1.Avail | ¬c2.Avail) ≤ P (¬c1.Avail)+εfail

• Guarantee. Functioning controllers – some sensor pro-
vides each variable that some controller expects:

∀m ∈ M · ∀c ∈ m.R · ∀v ∈ c.VarsR · ∃s ∈ m.S · v ∈ s.VarsS.

Sensor trustworthiness Atrust. In terms of our model
this analysis determines the possibility of each sensor be-
ing compromised (which we represent with boolean Trust)
given their placement, power status, availability, and the
attacker model. To avoid ambiguity we assume that un-
powered and unavailable sensors cannot be compromised.
Therefore Atrust marks a sensor as untrustworthy if and only
if the sensor is powered, available, and vulnerable for the
given attacker model:

∀s ∈ S : ¬Atrust(s) ⇐⇒ s.Pow∧s.Avail∧AttackM.IsVuln(s).

The sensor trustworthiness analysis views failures funda-
mentally differently from FMEA. It is expected that some
sensors may go out of order together because of a coordi-
nated physical attack or an adverse environment like fog.
This leads to the failure dependence assumption with an er-
ror bound εtrust > 0. While not being a direct negation
of FMEA’s assumption, failure dependence makes analysis
applicable in a different scope of designs. Whether the anal-
yses can be applied together on the same system depends on
calibration of the error bound parameters εfail and εtrust.

The correctness of the sensor trustworthiness analysis can
be expressed declaratively: untrustworthy sensors are the
ones that can be attacked by the selected attacker model.
We put this statement in the contract as a guarantee to
create a sanity check on the analysis implementation, which
may contain unknown bugs.

Given the above, we specify the contract for Atrust:

• Inputs: S, Place, Pow, Avail, AttackM.

• Output: Trust.

• Assumption. Component failure dependence – some
components are likely to fail together:

∃c1, c2 ∈ S∪R : P (¬c1.Avail | ¬c2.Avail) ≥ P (¬c1.Avail)−εtrust

• Guarantee. Correct trustworthiness assignment – a
sensor is not trustworthy if and only if it is vulner-
able for the considered attacker model:

∀m ∈ M, s ∈ m.S · s.Trust = ⊥ ⇐⇒ m.AttackM.IsVuln(s).

Control safety Actrl. This analysis determines whether the
control has a required performance, is stable and robust(or,
in short, safe). We abstract away the details of this analysis
and specify that it requires the control model (sensors, con-
trollers, actuators and their variables) and outputs whether
the control is safe. More details can be added as necessary
for more refined contracts.

A common feedback controller architecture includes a state
estimator (e.g., a Kalman filter or a decoder) and a control
algorithm, such as PID. A decoder is used to estimate the
genuine system state when an attacker may have falsified
some sensor data. According to Propositions 2 and 3 in
[20], it is required that at least half of sensors that sense the
same variable are trustworthy. Otherwise a decoder cannot
discover or correct an intentional sensor attack, leading to
the system being compromised. Powered off and unavailable
sensors are considered trustworthy, but do not contribute to
the trustworthiness estimate.

We specify the assumption about a half of sensors being
trustworthy by establishing a mapping function f (for each
variable) between trustworthy and untrustworthy sensors.
Existence and surjectivity8 of f mean that for each untrust-
worthy sensor there exists at least one unique trustworthy
sensor. That existence is equivalent to the proportion of
trustworthy sensors being at least 50%.

We thus arrive at the following contract for Actrl:

• Inputs: S, VarsS, R, VarsR.

• Output: CtrlSafe.

• Assumption. Minimal sensor trust – for each untrusted
sensor there is at least one different trusted sensor 9:

∀m ∈ M ∀c ∈ m.R, v ∈ c.VarsR ·
∃f : S→ S · ∀su ∈ m.S ·

v ∈ su.VarsS ∧ su.Trust = ⊥ =⇒
∃st ∈ m.S · v ∈ st.VarsS ∧ st.Trust = > ∧ f(st) = su.

• Guarantee: none.

8A surjective function covers its full range of values.
9This assumption can be written in a simpler form, ”at
least half of the sensors are trustworthy”: ∀m ∈ M ·
|m.Strustworthy|/|m.S| ≥ 0.5. Unfortunately such statements
cannot be verified in classic SMT, and theories with set car-
dinalities have not been implemented for SMT yet.

This concludes the specification of analysis contracts. We
remind the reader that the ultimate design goal is to apply
the analyses in a way that guarantees that the sensors trust-
worthiness is adequate for the considered attacker model
(s.Trust = ⊥ ⇐⇒ AttackM.IsVuln(s)), the system’s control
is safe (CtrlSafe = >), and that the system’s failure proba-
bility is not greater than αfail. In the next subsection we
demonstrate how we achieve this goal.

4.3 Contract verification
We first discuss the dependency resolution between anal-

yses. After that we separately describe verification of three
types of contracts: logical statements within first-order SMT,
logical statements beyond first-order SMT, and probabilistic
statements.

4.3.1 Dependency Resolution

Figure 3: Dependencies of analyses.

As it follows from the contracts, the analyses under con-
sideration have the following input-output dependencies (see
Figure 3 for illustration):

• Afmea does not depend on any analyses considered in
this paper.

• Atrust depends on Afmea that outputs S – an input for
Atrust.

• Actrl depends on Afmea that outputs S and R – inputs
for Actrl.

• Actrl depends on Atrust that outputs Trust – part of
an assumption for Actrl.

We execute the sequencing algorithm in the active tool
[55] to determine these dependencies and sequence the anal-
yses in a way that respects the dependencies [56]. For ex-
ample, if a user changes AttackM and tries to execute Actrl,
Atrust is executed first so that the assumption of Actrl is
verified on values of Trust that are consistent with AttackM.
Moreover, before Atrust is executed, Afmea is executed since
Atrust (and Actrl as well) depends on it as well.

4.3.2 Deterministic Contracts
We have verified some deterministic logical contracts in

this paper with an existing algorithmic solution. Specifi-
cally, we have the capacity to automatically translate de-
terministic contracts written using only first-order quantifi-
cation over variables in bounded sets into SMT programs
and verify them using the Z3 SMT solver with the existing
implementation of the active tool [55]. We expect many,
although not all, contracts in practice to be expressible with
currently verifiable first-order statements. Quantification

over unbounded (e.g., integers) or uncountable (e.g., reals)
sets may lead to poorly verifiable statements, and so far we
have been able to avoid such quantification.

Among this paper’s contracts, the guarantees of Afmea

and Atrust are first-order statements verifiable in our toolchain
because they quantify over bounded sets M, S, and R. We
verified them on our example system model and found no
violations because the model satisfies these guarantees.

Second-order quantification means quantifying over func-
tions, such as the sensor mapping function f in the assump-
tion of Actrl. Such statements can also be translated directly
to SMT programs. However, active does not yet handle
this translation, so we did not verify that assumption and
leave this for future work. Nevertheless, if the quantified
functions have bounded domain and range sets, these state-
ments are decidable by existing SMT solvers. Thus, inte-
grating second-order verification into active is possible and
requires three steps: (i) incorporating second-order clauses
into the contract language syntax, (ii) defining these clauses’
semantics, and (iii) augmenting the implementation of the
active verifier – a module of active that translates con-
tracts into SMT and manages their verification. Once the
second-order quantification is implemented in active, we
will be able to compute satisfaction of the control safety as-
sumption in Table 4 fully automatically by invoking active
verifier on the assumption and the current system model.

To summarize, for deterministic contracts in this paper
we specified and verified first-order statements in contracts,
specified a second-order statement, and identified a path to
implementing second-order verification.

4.3.3 Probabilistic Contracts
The assumptions of Afmea and Atrust are specified in

terms of probabilities of events like a sensor being unavail-
able. The probabilistic specification is convenient to capture
statements that go beyond boolean logic, which happens of-
ten in domains related to rare or uncertain events and be-
haviors. Fault tolerance, cryptography, and wireless ad hoc
networks are examples of such domains.

Our analysis contracts methodology is relatively undevel-
oped in terms of probabilistic contracts. Although we can
express them on case-by-case basis, there is no unified un-
derstanding of their syntax and semantics. In terms of se-
mantics a big challenge is finding an appropriate model for
probabilistic statements. Finding an axiomatic logical in-
terpretation such as SMT is not practical unless a contract
leads to a contradiction via theorems without considering
the actual distributions, which is not a general case. There-
fore we need to go beyond SMT in this verification.

One approach is mapping an AADL model into a proba-
bilistic semantic space. This would entail firstly incorporat-
ing some probabilistic logic like PCTL (Probabilistic Com-
putation Tree Logic) [27] into the contracts language. Sec-
ondly and most importantly, one would need to create a
AADL-based probabilistic state space models with such for-
malisms as Markov chains or Markov rewards [54]. The role
of these models would be to capture the behavior in a certain
domain or subsystem, as we did with Promela models in [56].
Whether such models can be generalized beyond a single do-
main is another open research question. Finally, probabilis-
tic model checking tools like PRISM [37] or MRMC (Markov
Reward Model Checker) [34] needs to be integrated with the
verification algorithms in active verifier.

A less general alternative is building a custom verification
solution for specific domains and contracts. For example,
one could implement an algorithm in a general-purpose pro-
gramming language to verify the assumptions of Afmea and
Atrust. This method would not provide the guarantees and
generality of model-based approaches. However, it may be
more practical in case general solutions are not scalable or
even feasible. To summarize, the investigation of verifica-
tion for probabilistic contracts is a major direction that we
envision for future work.

5. LIMITATIONS
Formal methods face several threats in terms of practical

adoption. Analysis contracts capture interactions between
analyses using formal logic and rely upon automated ver-
ifiers. Both require up-front effort in building the formal
methods expertise and tools for their verification. However,
formal specification and verification are successfully used in
domains, for example avionics, where the cost of ensuring
safety and security of human lives justifies the additional ef-
fort. Hence, the task of carrying out the contracts method-
ology can be assigned to a dedicated team of integration
engineers to overcome the obstacles of practical adoption.

Another open question is the generality of our framework.
Although we used analysis contracts only for a number of
representative analyses, we believe that the approach is gen-
erally applicable to other analyses in security and reliability
domains because it is common for reasoning to rely on fixed
assumptions about how secure or reliable parts of system
are. It is, however, possible that some domains do not rea-
son in terms of analyses, and in those cases our framework
would not be applicable. We have not discovered such do-
mains yet. The practical applicability of our implementation
is limited to the available verification algorithms in active.
Currently these exist for first-order logical statements, and
we plan to extend the active verification toolset.

There are also several technical challenges to the analysis
contracts approach. Scalability of verification can be an is-
sue depending on the type of contract and model involved.
In our prior work, we illustrated the viability of our approach
for moderate-size behavioral problems [56]. Expressiveness
of the contracts relies on the logical theories and tools we
employ, so absence of theories may be a roadblock. One such
instance is the assumption of Actrl that could have been ex-
pressible in SMT, if not for the lack of operators for set cardi-
nality or array counting. We could incorporate more general
theories to enhance expressiveness. However, increasing ex-
pressiveness is associated with additional challenges such as
decidability. For example, first-order predicate logic is de-
cidable with quantification over bounded sets, but not over
unbounded sets. Hence, we have to carefully balance ex-
pressiveness with feasibility and decidability. Lastly, as we
continue to evaluate our approach on other domains, we may
uncover additional challenges to the contracts methodology.

6. DISCUSSION AND CONCLUSIONS
The goal of this work was to improve multi-domain secu-

rity engineering of cyber-physical systems. We presented an
application of the analysis contracts methodology to repre-
sentative analyses from domains of reliability, sensor secu-
rity, and control. In particular, we formally specified do-
main interdependencies and assumptions that lead to vul-

nerabilities and gave a scenario of their exploitation. To-
wards detecting and preventing such vulnerabilities, we em-
ployed our methodology to specify and verify implicit as-
sumptions and dependencies between analyses. We thus de-
scribed how analysis contracts are used to expose and elim-
inate inter-domain vulnerabilities. Our next step is imple-
menting second-order and probabilistic verification to fully
automate the workflow, as discussed in Section 4.3.2 and
4.3.3. Our work has also exposed several intriguing longer-
term research directions in CPS modeling and verification.

One interesting direction for future work is extending the
described analyses towards richer contracts. A control as-
sumption that we did not consider is invariance of the set of
attacked nodes and the attacker model during runtime. In
[20] Fawzi et al. ”assume [...] that the set of attacked nodes
[i.e., sensors] does not change over time.” In practice, this
is a fairly limiting assumption for CPS like self-driving cars
that move through a highly dynamic environment. To verify
this assumption, we need to model factors that change sen-
sors over time (attacks, failures), as well as an evolutionary
attacker model that may react to the system’s responses.

Another future work opportunity is incorporating more
analyses from the domains of this paper. So far, we have
explored the control analysis for decoding potentially un-
trustworthy sensor readings. Other possibilities are stealth
attack detection [45] or robustness for systems with noise
[50]. Incorporating these analyses would allow us to move
beyond the black-box approach to control analyses, thus im-
proving the depth and quality of verification.

Finally, one can integrate other domains with the ones
in this paper. For example, one may use hybrid programs
[51] to analyze safety of braking behavior. But what are
the theoretical guarantees if some sensors are compromised?
Answering this question would require interaction between
domains of sensor security, control, scheduling, and hybrid
systems. For example, if the braking decision is made by
voting among several controllers, it is critical to know the
last moment to submit a vote, in order to not miss the brak-
ing deadline. Can compromised voters sway the decision and
cause a collision? The advantage of exploring hybrid pro-
grams is that they allow modeling safety-critical behavior in
continuous time, unlike many discrete approximations.

To conclude, we established that there are important yet
implicit interactions between traditional CPS domains and
sensor security. If not handled carefully, such vulnerabilities
may be exploited with devastating consequences. The anal-
ysis contracts methodology shows promise for eliminating
such vulnerabilities, and we plan to develop it further.

Acknowledgments
Copyright 2015 ACM. This material is based upon work
funded and supported by the Department of Defense un-
der Contract No. FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering In-
stitute, a federally funded research and development center.
This material has been approved for public release and un-
limited distribution. DM-0002551.

This work was also supported in part by the National
Science Foundation under Grant CNS-0834701, and the Na-
tional Security Agency.

The authors thank Javier Camara for his help in exploring
the body of research on probabilistic model checking.

7. REFERENCES
[1] P. Axer and R. Ernst. Designing an Analyzable and

Resilient Embedded Operating System. In Informatik
2012, 42. Jahrestagung der Gesellschaft für Informatik
e.V. (GI), 16.-21.09.2012, Braunschweig, 2012.

[2] R. Baheti and H. Gill. Cyber-Physical Systems.
Technical report, 2011.

[3] L. Benvenuti, A. Ferrari, L. Mangeruca, E. Mazzi,
R. Passerone, and C. Sofronis. A contract-based
formalism for the specification of heterogeneous
systems. In 2008 Forum on Specification Verification
and Design Languages. IEEE, sep 2008.

[4] D. Broman, E. A. Lee, S. Tripakis, and M. Törngren.
Viewpoints formalisms, languages, and tools for
cyber-physical systems. In Proc. of the 6th Workshop
on Multi-Paradigm Modeling, 2012.

[5] A. A. Cardenas, S. Amin, and S. Sastry. Secure
control: Towards survivable cyber-physical systems. In
The 28th International Conference on Distributed
Computing Systems Workshops. IEEE, 2008.

[6] C. S. Carlson. Effective FMEAs. John Wiley & Sons
Inc., 2012.

[7] S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, S. Savage, K. Koscher, A. Czeskis,
F. Roesner, and T. Kohno. Comprehensive
Experimental Analyses of Automotive Attack
Surfaces. In Proceedings of the 20th USENIX
Conference on Security, Berkeley, CA, USA, 2011.

[8] D. W. S. Clair. Controller Tuning and Control Loop
Performance. Straight-Line Control Co., Newark,
second edition edition edition, 1990.

[9] J. Dabney and T. L. Harman. Mastering SIMULINK
2. Prentice Hall, Upper Saddle River, N.J., 1998.

[10] A. Davare, D. Densmore, L. Guo, R. Passerone, A. L.
Sangiovanni-Vincentelli, A. Simalatsar, and Q. Zhu.
metro II. ACM Trans. Embed. Comput. Syst.,
12(1s):1, 2013.

[11] A. Davare, D. Densmore, T. Meyerowitz, A. Pinto,
A. Sangiovanni-Vincentelli, G. Yang, H. Zeng, and
Q. Zhu. A Next-Generation Design Framework for
Platform-based Design. In DVCon 2007, 2007.

[12] L. de Moura and N. Bjørner. Z3: An Efficient SMT
Solver. In Lecture Notes in Computer Science, pages
337–340. Springer Science Business Media, 2008.

[13] D. De Niz, L. Wrage, A. Rowe, and R. R. Rajkumar.
Utility-Based Resource Overbooking for
Cyber-Physical Systems. ACM Trans. Embed.
Comput. Syst., 13(5s):162:1–162:25, Oct. 2014.

[14] J. Delange and P. Feiler. Architecture Fault Modeling
with the AADL Error-Model Annex. In 40th
Conference on Software Engineering and Advanced
Applications, pages 361–368, 2014.

[15] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Y. Xiong. Taming
heterogeneity - the Ptolemy approach. Proc. IEEE,
91(1), 2003.

[16] Ethan McGee, Mike Kabbani, and Nicholas Guzzardo.
Collision Detection AADL, 2013.
https://github.com/mikekab/collision detection aadl.

[17] A. Evans, S. Kent, and B. Selic. UML 2000 - The
Unified Modeling Language. Advancing the Standard.
Springer, New York, 2000.

[18] E. Eyisi, Z. Zhang, X. Koutsoukos, J. Porter,
G. Karsai, and J. Sztipanovits. Model-Based Control
Design and Integration of Cyberphysical Systems: An
Adaptive Cruise Control Case Study. Journal of
Control Science and Engineering, 2013.

[19] J. Faber. Verification Architectures: Compositional
Reasoning for Real-Time Systems. In Integrated
Formal Methods. Springer, 2010.

[20] H. Fawzi, P. Tabuada, and S. Diggavi. Secure
Estimation and Control for Cyber-Physical Systems
Under Adversarial Attacks. IEEE Transactions on
Automatic Control, 59(6), 2014.

[21] P. H. Feiler, B. Lewis, S. Vestal, and E. Colbert. An
Overview of the SAE Architecture Analysis & Design
Language (AADL) Standard: A Basis for
Model-Based Architecture-Driven Embedded Systems
Engineering. In Architecture Description Languages.
Springer Science Business Media, 2005.

[22] R. B. Franca, J.-P. Bodeveix, M. Filali, J.-F. Rolland,
D. Chemouil, and D. Thomas. The AADL behaviour
annex – experiments and roadmap. In 12th
International Conference on Engineering Complex
Computer Systems. IEEE, 2007.

[23] L. P. Francesco Oliviero. REFACING: An autonomic
approach to network security based on
multidimensional trustworthiness. Computer
Networks, 52:2745–2763, 2008.

[24] G. Frehse. PHAVer: Algorithmic Verification of
Hybrid Systems Past HyTech. In Hybrid Systems:
Computation and Control. Springer, 2005.

[25] D. Garlan, R. Monroe, and D. Wile. Acme:
Architectural Description of Component-Based
Systems. Foundations of component-based systems,
2000.

[26] I. Goldhirsch, P.-L. Sulem, and S. A. Orszag. Stability
and Lyapunov stability of dynamical systems: A
differential approach and a numerical method. Physica
D: Nonlinear Phenomena, 27(3), 1987.

[27] H. Hansson and B. Jonsson. A logic for reasoning
about time and reliability. Formal Aspects of
Computing, 6(5), 1994.

[28] M. Hecht, A. Lam, and C. Vogl. A Tool Set for
Integrated Software and Hardware Dependability
Analysis Using the Architecture Analysis and Design
Language (AADL) and Error Model Annex. In 16th
International Conference on Engineering of Complex
Computer Systems. IEEE, 2011.

[29] C. A. R. Hoare. An Axiomatic Basis for Computer
Programming. In Programming Methodology, pages
89–100. Springer New York, 1978.

[30] G. J. Holzmann. The Model Checker SPIN. IEEE
Trans. Softw. Eng., 23(5):279–295, may 1997.

[31] J. Hugues and S. Gheoghe. The AADL Constraint
Annex. 2013.

[32] A. Iliaifar. LIDAR, lasers, and logic: Anatomy of an
autonomous vehicle, 2013.

[33] W. Jones. Keeping cars from crashing. IEEE Spectr.,
38(9), 2001.

[34] J.-P. Katoen, M. Khattri, and I. Zapreevt. A Markov
reward model checker. In 2nd International Conference
on the Quantitative Evaluation of Systems, 2005.

[35] M. Klein. A Practitioner’s Handbook for Real-Time
Analysis: Guide to Rate Monotonic Analysis for
Real-Time Systems. Springer, 1993.

[36] K. Koscher, A. Czeskis, F. Roesner, S. Patel,
T. Kohno, S. Checkoway, D. McCoy, B. Kantor,
D. Anderson, H. Shacham, and S. Savage.
Experimental Security Analysis of a Modern
Automobile. In Symposium on Security and Privacy.
IEEE, 2010.

[37] M. Kwiatkowska, G. Norman, and D. Parker.
Stochastic Model Checking. In Formal Methods for
Performance Evaluation. Springer, 2007.

[38] E. Lee. The Past Present and Future of
Cyber-Physical Systems: A Focus on Models. Sensors,
15(3), 2015.

[39] E. A. Lee. Cyber Physical Systems: Design
Challenges. In 11th International Symposium on
Object and Component-Oriented Real-Time
Distributed Computing. IEEE, 2008.

[40] E. A. Lee. CPS foundations. In Proceedings of the 47th
Design Automation Conference. ACM Press, 2010.

[41] F. G. Marmol and G. M. Perez. Towards
pre-standardization of trust and reputation models for
distributed and heterogeneous systems. Computer
Standards & Interfaces, 32(4), 2010.

[42] R. Mateescu. Model Checking for Software
Architectures. In Software Architecture, pages
219–224. Springer Science Business Media, 2004.

[43] C. Miao, L. Huang, W. Guo, and H. Xu. A
Trustworthiness Evaluation Method for Wireless
Sensor Nodes Based on D-S Evidence Theory. In
K. Ren, X. Liu, W. Liang, M. Xu, X. Jia, and
K. Xing, editors, Wireless Algorithms, Systems, and
Applications, number 7992 in Lecture Notes in
Computer Science, pages 163–174. Springer Berlin
Heidelberg, 2013.

[44] F. Miao, M. Pajic, and G. J. Pappas. Stochastic game
approach for replay attack detection. In 52nd IEEE
Conference on Decision and Control. IEEE, 2013.

[45] Y. Mo, T. H.-J. Kim, K. Brancik, D. Dickinson,
H. Lee, A. Perrig, and B. Sinopoli. Cyber Physical
Security of a Smart Grid Infrastructure. Proc. IEEE,
100(1), 2012.

[46] M.-Y. Nam, D. de Niz, L. Wrage, and L. Sha.
Resource allocation contracts for open analytic
runtime models. In Proc. of the 9th International
Conference on Embedded Software, 2011.

[47] G. Nitsche, K. Gruttner, and W. Nebel. Power
contracts: A formal way towards power-closure?! In
23rd International Workshop on Power and Timing
Modeling Optimization and Simulation. IEEE, 2013.

[48] P. Nuzzo, H. Xu, N. Ozay, J. B. Finn, A. L.
Sangiovanni-Vincentelli, R. M. Murray, A. Donze, and
S. A. Seshia. A Contract-Based Methodology for
Aircraft Electric Power System Design. IEEE Access,
2:1–25, 2014.

[49] K. Ogata and J. W. Brewer. Modern Control
Engineering. J. Dyn. Sys. Meas., Control, 93(1), 1971.

[50] M. Pajic, J. Weimer, N. Bezzo, P. Tabuada,
O. Sokolsky, I. Lee, and G. J. Pappas. Robustness of
attack-resilient state estimators. In International
Conference on Cyber-Physical Systems. IEEE, 2014.

[51] A. Platzer. Logical Analysis of Hybrid Systems.
Springer Berlin Heidelberg, 2010.

[52] Rajhans, Akshay. Multi-Model Heterogeneous
Verification of Cyber-Physical Systems. PhD thesis,
Carnegie Mellon University, 2013.

[53] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic.
Cyber-physical systems. In Proceedings of the 47th
Design Automation Conference. ACM Press, 2010.

[54] J. E. Rolph and R. A. Howard. Dynamic Probabilistic
Systems Volume I: Markov Models and Volume II:
Semi- Markov and Decision Processes. Journal of the
American Statistical Association, 67(340), 1972.

[55] I. Ruchkin, D. De Niz, S. Chaki, and D. Garlan.
ACTIVE: A Tool for Integrating Analysis Contracts.
In The 5th Analytic Virtual Integration of
Cyber-Physical Systems Workshop, Rome, Italy, 2014.

[56] I. Ruchkin, D. D. Niz, D. Garlan, and S. Chaki.
Contract-based integration of cyber-physical analyses.
In Proceedings of the 14th International Conference on
Embedded Software - EMSOFT '14. ACM Press, 2014.

[57] A. Sangiovanni-Vincentelli, W. Damm, and
R. Passerone. Taming Dr. Frankenstein:
Contract-Based Design for Cyber-Physical Systems.
European Journal of Control, 18(3), 2012.

[58] H. Schneider. Failure Mode and Effect Analysis:
FMEA From Theory to Execution. Technometrics,
38(1), 1996.

[59] D. P. Siewiorek and P. Narasimhan. Fault-Tolerant
Architectures for Space & Avionics Applications. 2005.

[60] V. Subramanian, S. Uluagac, H. Cam, and R. Beyah.
Examining the characteristics and implications of
sensor side channels. In 2013 IEEE International
Conference on Communications (ICC), June 2013.

[61] J. Sztipanovits, T. Bapty, S. Neema, L. Howard, and
E. Jackson. OpenMETA: A Model- and
Component-Based Design Tool Chain for
Cyber-Physical Systems. In From Programs to
Systems. The Systems perspective in Computing.
Springer Science Business Media, 2014.

[62] L.-A. Tang, X. Yu, S. Kim, Q. Gu, J. Han, A. Leung,
and T. La Porta. Trustworthiness analysis of sensor
data in cyber-physical systems. Journal of Computer
and System Sciences, 79(3), 2013.

[63] A. Uluagac, V. Subramanian, and R. Beyah. Sensory
channel threats to Cyber Physical Systems: A
wake-up call. In Conference on Communications and
Network Security, pages 301–309, Oct. 2014.

[64] S. Vestal. Mode changes in a real-time architecture
description language. In Proceedings of 2nd
International Workshop on Configurable Distributed
Systems. IEEE, 1994.

[65] Z. Yang, K. Hu, D. Ma, L. Pi, and J.-P. Bodeveix.
Formal semantics and verification of AADL modes in
Timed Abstract State Machine. In Intl Conference on
Progress in Informatics and Computing, 2010.

[66] J. Zhang and G. Li. A Novel Model-Based Method for
Automatic Generation of FMEA. In Proc. of the
Symposium on Computer Communication, Control
and Automation. Atlantis, 2013.

	Introduction
	Background and Related Work
	Sensor Security
	Reliability and Fault Tolerance
	CPS Control
	Architectural Modeling in AADL
	Analysis Contracts Approach
	Related Work

	Inter-Domain Vulnerabilities
	Scenario Description
	Adversary Model
	Analyses
	Failure Modes and Effects Analysis
	Sensor Trustworthiness Analysis
	Control Safety Analysis

	Exploiting Inter-Domain Vulnerabilities

	Analysis Contracts Approach
	System Model
	Specification of Contracts
	Contract verification
	Dependency Resolution
	Deterministic Contracts
	Probabilistic Contracts

	Limitations
	Discussion and Conclusions
	References

